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A method is developed for obtaining an incomplete integral of the twodimen- 
sional Hamilton - Jacobi equation for a particle when a particular solution 
that satisfies a special equation in partial derivatives is known. The equation 
for the trajectory of dipole particles moving with zero total energy in an arbitr- 

ary two-dimensional electrostatic field is obtain, as an example. 

The problem of particle motion in a two-dimensional conservative field can be 
solved in quadratures only in the case of Liouville systems [l]. The range of problems 
integrable in quadratures can be widened by seeking an incomplete integral of the 

Hamilton - Jacobi equation containing one free constant and, consequently, defin- 
ing an isoenergetic set of trajectories. A method is proposed in this paper for the 
derivation of an incomplete integral using a known particular integral that satisfies 

some special condition. 
Let us conside the motion of a particle of unit mass in a two-dimensional field with 

potential II (z, y), where I and y are Cartesian coordinates in a plane. The 
respective Hamilton - Jacobi equation is of the form 

l/Z (S,2 + S,?) + H (? Y) = h (1) 
where s (x, y, h, a) is the sought complete integral, h is the particle totalenergy, 
and a an arbitrary constant. 

Let us assume that the particular integral of (1) for some fixed meaning of energy 
h,, of form u (5, y) or the integral of form u (z, y, h) has been obtained and that it 

satisfies the linear homogeneous second order equation in partial derivatives 

*XX + uw + au, + bug = 0 

In the first case such integral can be found, if 

rI=h,- 112 (ux2 + UY2) (3) 

and u (r, y) satisfies Eq. (2). 
The conditions that must be satisfied by functions a (5, Y) and b (5, y) will 

be formulated later. 
Let us show how to obtain in this case an integral of (1) of the form S (5, Y, a) 

or s (5, Y, h, a) 1 respectively. Since, u is a particular integral of (1). hence 
s,2 + svs = IL22 + uy2 (4) 
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We seek the integral of Eq. (4) in the form of solution of the following system of 
linear first order equations: 

S, = uy sin p + II?, ccs q, S, = -ux COS 9, + uy sin 9 (5) 

whose compatibility is satisfied on the strength of (2), and parameter o must appear 
in function CD (I, Y, a) which is yet to be determined. 

By virtue of system (5) Eq. (4) is satisfied for any function rp . The compatibi~ty 
condition (5) S,v = X,X leads to the equation 

UXX + r(YY - (cp, tg cp - cpy)% - (% + (Pv tg (P)uy = 0 (6) 

The comparison of (6) with (2) yields the following system of two quasilinear equa- 
tions for q: 

y, tg rp - vu = --a, yX -t qY tg 4, = --b (7) 

and the compatibility condition (P%~ = rpv~ of system (5) yields the equation 

(% - b,) tg ‘P = a2 + b2 - as - bv (8) 

Since the sought integral of Eq. (6) depends on the arbitrary constant o! L while 
functions a and b are independent of a, hence (8) yields a system which imposes 

on these functions the requirement 

au - 6, = 0, a, f bv = a2 -j- b2 (9) 

By setting 
a = px ip, b=p,Jp (W 

we satisfy the first equation of system (9), while the second yields for function p the 
condition 

Pnr -t Pvy = 0 (11) 

When conditions (10) and (11) are satisfied, system (7) becomes completely inte- 
grable, which makes it possible to determine its integral of the form ‘p (2, Y, a)* 
Thus by seeking cp in the implicit form 

Q (x, y, 9,) = const = a (12) 

we obtain a completely integrable system for functions d, (z, y, cp) in which ‘p plays 
the part of variable 

QX t8 ‘P - mv = a@,, (D, + @v tg rp = b@, f 13) 

By finding some integral of system (13) containing cp, substituting it into (12), 
and solving the obtained equation for cp, we determine the required integral of (7). 

Hence, when the particular integral of (1) satisfies Eq. (2) with coefficients defined 
by (10) and (11). it is possible to find the integral of (1) which in addition to prev- 
ious variables contains the arbitrary constant a. 

As an example of application of this method, we shall consider the plane motion 
of a particle with the potential energy 

II = -“!z (zrxZ -+- @) ( 14) 
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where u (x, ZJ) is an arbitrary harmonic function of the form 

K-CC + %lll = 0 (151 

This case represents a wide class of phenomena, such as the motion of electrically 
neutral atoms and molecules or uncharged metal parts in an electrostatic field with 
harmonic potential u (5, y). 

Substi~~g the expression for II in (14) into (l), we obtain 

(S,2 + Sy2) - (ur2 + uy”) = 2h (16) 

When h = 0 , then S = u (5, Y) which satisfies Eq. (15) which is a particular 
case of (2) when a = 0 and b = 0 and, consequently p = const is obviously a 
particular integral of (16). With these values of a and b ‘p=a can be taken as 
the integral of system (7). Then the incomplete integral of (16) assumes the form 

S (r, y, a) = u (5, y) sin a - Y (5, y) cos a (17) 

where 2: (2, V) is a harmonic function (us = ZJ~, uy = -uz) conjugate of u (x, II). 
In this case the incomplete integral is expressed in terms of the electrostatic poten- 

tial E( (2, Y) and the stream function v (5, Y), while the trajectory of a particle 
moving in an arbitrary electrostatic field with zero total energy in the plane of field 

action, can be always be defined in quadratures, since by the Lehman Filet theorem 

[Z] the relation 

s, = B ( 18) 

is the equation of trajectory. substituting (17) into (18) we obtain the equation of 
particle trajectory when h = 0 

u (5, y) co3 a + v (z, y) sin a = fi 

For instance, the entry of a particle at arbitrary velocity perpendicular to the 
field plane of action corresponds to the case of zero energy in that plane. 

Let us also consider the motion of dipole particles in axisymmetric electrostatic 
fields, with zero initial momen~m of rotation about the axis. 

In cylindrical coordinates r, Q, z (1) assumes the form 

(ST2 + S,2) - (u,a + uz2) = 2h (1% 

with u (r, 2) satisfies the axisymmetric Laplace equation 

Equation (20) satisfies conditions (2), (lo), and ( ll), since in this case p=r 

(we recall that r and z are now used instead of z and Y ) . When h = 0 Eq, 

(19) has the integral S = u ( r, 2). In this case system (13) is of the form 

@, tg ‘p - Qr = r-*@o, % + Qz tg rp = 0 (24 

Having solving system (21), we obtain 

Hence it is possible to write the integral of system (5) as 
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dr -t 
(a+z)u,-rrur 

y’ra + (a + z)2 dz (22) 

Substituting now in (18) the expression (22) for S we obtain the trajectories of 

dipole particles moving with zero energy in the meridional plane of an arbitrary axis- 
ymmetric electrostatic field. 

In conclusion we shall show how all problems that are integrable by the proposed 
method can be reduced to the case considered above, This makes it possible to avoid 
solving systems of differential equations and use the already available results. Let us 
assume that the integral u (s, Y) of Eq. (1) which satisfies Eq. (2) for some function 
p (x, y) # const has been found when h = h,, 0 We pass to curvilinear coordinates 5, ?J 

w = 1 (2); 20 = f -/- iq, z = 5 + iy, 1 (2) = P (x7 Y) i- iq (2, Y) 

where q (5, y) is a function harmonically conjugate of p (z, r/l. 
When h = h,, Eq. (1) in terms of the new coordinates if of the form 

(Sj2 --t_ Sr\2) - (UF;2 + “n2) == 0, v (F, ?I) = u 13 (E* rl), Y (5, rl)l (23) 

Function U (c, 71) satisfies Eq. (2) expressed in coordinates g, 9 which within 
the designation of variables is the same as Eq. (20). Equation (23) is the same as (19) 
when h = 0 I hence the whole problem reduces to the one already solved. If we 
extend the axisymmetric case using arbitrary harmonic functions p (2, yf , taking 
into consideration also the case of p (r, y) =- coust, we obtain all problems that 

are integrable by the expounded method. 
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